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CHAPTER 13

Measuring codon usage bias
Alexander Roth, Maria Anisimova, and Gina M. Cannarozzi

13.1 Introduction

In protein-coding genes, the genetic code defines
the translational mapping from nucleotide triplets
(or codons) to amino acids. Synonymous codons
translate to the same amino acid and are indistin-
guishable at the protein level. However, most genes
and organisms do not use synonymous codon uni-
formly; certain synonymous codons are used pref-
erentially, a phenomenon called codon usage bias
(or shorter, codon bias). In this chapter we discuss
the biological causes and the statistical measures of
codon usage bias. Given the large number of exist-
ing codon bias measures, the specifics, utility, and
comparative performance of different approaches
may be often elusive, especially to a novice in the
field.

Here we review, classify and compare most
codon bias measures proposed to date.

13.2 Causes of codon usage bias

Most protein-coding DNA sequences use synony-
mous codons with very different frequencies. The
first reports of non-uniform codon usage date to as
early as four decades ago. Clarke (1970) and later
Ikemura (1981a), and Akashi (1994), suggested that
codon usage adapted to match an organism’s tRNA
pool. Observed differences in codon bias between
species are a result of different evolutionary forces
acting on the choice of codons (Ikemura, 1981a).
Codon usage can differ widely not only between
organisms, but also within a genome. For exam-
ple, eukaryotic genomes are known to exhibit het-
erogeneous nucleotide content creating an isochore
structure. Isochores are long DNA segments with
relatively homogeneous GC content (Macaya et al.,
1976). Isochores are typically rich in protein-coding

genes and consequently affect codon usage in genes
within isochores.

While codon bias does not directly influence the
protein sequence, it may have important impact on
the protein product and cellular processes. How-
ever, the exact mechanisms driving synonymous
variation are still not well understood. There exists
a variety of hypotheses to explain mechanisms
responsible for codon bias. But the relative impor-
tance and the possible interplay between the many
explanations are poorly understood and the varia-
tion in synonymous codon usage continues to puz-
zle molecular and evolutionary biologists.

On a mechanistic level, codon usage is shaped
by the balance between mutational biases and
natural selection (see, for example: Duret, 2002,
Hershberg and Petrov, 2008) but estimating the rel-
ative contributions of selection versus mutational
biases can be difficult and varies between eukary-
otes and prokaryotes. The influences of these two
factors are discussed in the following sections.

13.2.1 Mutational biases affecting codon
usage

Codon bias may result from mutational biases
alone. Mutational biases are caused by underlying
mechanisms that favour certain types of mutations,
such as chemical decay of nucleotide bases Kauf-
mann and Paules (1996), non-uniform DNA repair,
and non-random replication errors. The result is
biased codon and amino acid usage (Knight et al.,
2001). Mutational biases are neutral (do not affect
fitness) and typically act globally on all DNA
sequences of a given organism.

For example, the dinucleotides TA and CG
(known as TpA and CpG) occur at a lower fre-
quency than expected based on the nucleotide
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frequencies (Kaufmann and Paules, 1996). In
eukaryotes the cytosine in CG dinucleotides is eas-
ily methylated; the methylated form of cytosine
then spontaneously deaminates into thymine. As
the thymine is not detected by the DNA repair
mechanisms, these errors are not corrected. In the
human genome, the CG dinucleotide occurs at only
21% of the frequency expected by random chance
given the frequencies of C and G (Lander et al.,
2001).

In most life forms TA nucleotides are also
found less frequently than expected based on the
nucleotide frequencies. This is thought to be due to
the avoidance of the stop codons TAA and TAG,
as well as the avoidance of UA in mRNA, which is
susceptible to RNAse activity (Beutler et al., 1989).

Many mutations originate from non-random
mismatch repair following replication errors and
methylation. Such strand-specific mutational biases
result from different fidelities of replication of
the leading and lagging strands. Such asymmetric
mutation rates of the leading and lagging strands
are found in both bacteria (Lobry, 1996; Fijalkowska
et al., 1998; McLean et al., 1998) and eukaryotes
(Pavlov et al., 2003; Kunkel et al., 2003).

Global species differences in codon usage are typ-
ically explained by mutational biases.

13.2.2 Selection affecting codon usage

In contrast to purely mutational mechanisms, selec-
tive forces may also influence synonymous codon
usage. Codon bias caused by selection may be spe-
cific to genes or even codon positions, where it
can induce more efficient or accurate translation or
protein folding. These patterns can be observed by
comparing coding and non-coding regions of DNA.

Selection acts upon the changes created by neu-
tral mutational processes and may originate from
many sources and vary in strength. For example,
in some genes the synonymous codon usage is pri-
marily shaped by translational selection, while in
others, it may be shaped by mutational bias. Differ-
ent types of selection act on different levels.

At the DNA level there are patterns that are
avoided or preferred. These can be related to func-
tional elements of DNA such as DNA packing of
nucleosomes and other varying nucleotide distrib-
utions along the genome.

At the RNA level, selection for effective tran-
scription (Xia, 1996) has been proposed, in which
mRNA with more abundant nucleotides are tran-
scribed more quickly. In these cases, the codons
are enriched in common nucleotides. Selection can
also take place at the mRNA level, where some pat-
terns are avoided or preferred, to influence mRNA
folding and decay. Codon bias also correlates well
with mRNA levels. This is an indication that there
is a global optimization of minimizing the time the
ribosomes are engaged in translation of the mRNA.
Codons evolving under positive selection have cor-
responding tRNAs in larger quantities and possibly
bind to the mRNA at the ribosome more rapidly
(Ran and Higgs, 2010).

At the translation level, an important factor deter-
mining protein yield is the initiation rate. Experi-
ments in which the synonymous codons have been
randomized, show that strong folding in the region
around the ribosome-binding site inhibits the ini-
tiation of translation by making the binding site
inaccessible to the ribosome (Kudla et al., 2009).
Such patterns are selected against in natural pop-
ulations. Consequently, the most likely candidates
for codons under selection are those that can influ-
ence mRNA folding by inducing strong secondary
structures, in particular those close to the ribosome
binding site (Kudla et al., 2009). In addition, the
splicing of mRNA requires specified nucleotide
motifs. Synonymous mutations on such sites can
introduce cryptic splice sites and have large effects
on the phenotype (Pagani and Baralle, 2004). The
use of preferred or rare codons affects the rate
of translation and elongation, and consequently
can influence the co-translational protein folding
(Kimchi-Sarfaty et al., 2007).

However, the main factor influencing codon
usage is selection for optimal translation at the
level of protein synthesis. Highly expressed genes
are enriched in the most frequent (’optimal’)
codons. Genes that are less abundant, often show
milder codon preference. In several organisms
there is a significant correlation between codon
usage bias and protein abundance. Codon choice
is constrained by tRNA availability. Transfer RNA
availability at elongation is an important factor
contributing to the choice of codons. Codons cor-
responding to rare tRNA species can induce long
waiting times and stall elongation at such positions.
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There is a strong correlation between the codon
bias and the gene copy number of the correspond-
ing tRNA (Ikemura, 1981a). In addition to being
translated quickly, fidelity of translation is also
important, in particular for abundant proteins. Mis-
incorporations can have dire consequences and
cause protein misfolding (Drummond et al., 2006).
A large error rate in the synthesis of crucial pro-
teins, means that a large fraction of the proteins pro-
duced are non-functional and must be catabolized.
This can carry a high cost for the organism.

Selection for optimal translation is most effec-
tive in organisms with large effective population
sizes (Bulmer, 1987). Indeed, strong codon bias was
reported in the genomes of E. coli and yeast, which
have large population sizes. Mammalian genomes
have a small effective population size and there is
much less evidence for selection. The codon usage
in mammals is correlated to the local chromosomal
nucleotide content of flanking regions and introns
and mutational bias appears to be dominating the
evolution of codon usage. However, there is also
evidence that synonymous codon usage in mam-
mals is not neutral (Chamary et al., 2006; Kimchi-
Sarfaty et al., 2007).

There is a bias in the choice of pyrimidine bases
at the third position of synonymous codons such
that the codon–anticodon binding has an interme-
diate strength in the choice of pyrimidine bases at
the third position of synonymous codons (Grosjean
et al., 1978; Ikemura, 1981a). If the two first positions
of a codon are strong nucleotides (S = G or C, three
hydrogen bonds) then the third codon position has
more often a weak nucleotide (W = A or T, two
hydrogen bonds). The other scenario is also true,
if weak nucleotides are found at the first two posi-
tions, then the strong nucleotides are more com-
mon at the third position. This bias is independent
of amino acid composition. Selection for uniform
binding properties of tRNA are likely to be benefi-
cial for translation, by preventing stalling on strong
codons and insufficient binding of weak codons.

Moreover, the choice of a codon in a new instance
of a synonymous codon at a position downstream
may be influenced by a previous occurrence, impli-
cating the order of synonymous codons as a factor.
It was found that use of a codon decoded by the
same isoacceptor tRNA is preferred to other syn-

onymous codons at subsequent occurrences of the
same amino acid (Cannarozzi et al., 2010). As two
tRNAs are simultaneously bound to the ribosome
only briefly, tRNA reuse is possible at the +2 codon
(Uemura et al., 2010). Codon bias in different gene
regions appears to be under different selective con-
straints, due to the early phase of translation (Karlin
et al., 1998). The first 30 to 50 codons are translated
with low efficiency. In order to reduce traffic con-
gestion of ribosomes, they form a ‘ramp’ to reduce
the speed of translation in the early stage of the
elongation cycle (Tuller et al., 2010). It is also possi-
ble that the codon usage acts as an extra level of reg-
ulation to fine-tune the levels of protein abundance
(Begley et al., 2007; Parmley and Huynen, 2009),
through the usage of regulatory codons. Further
evidence for this is that the levels of protein abun-
dance for orthologs among species are surprisingly
more conserved than the mRNA levels (Weiss et al.,
2010). Also, some metabolic genes are enriched in
a subset of non-common codons. These codons are
decoded by tRNAs that, upon amino acid starva-
tion, are preferentially recharged over other isoac-
ceptor tRNA (Elf et al., 2003).

Other constraints on the amino acid level may
shape the codon composition. There is a relation-
ship between codon choices and the secondary
structure of proteins (Adzhubei et al., 1996). For
example, membrane proteins have a much higher
incidence of alpha helixes, which bias the choice
of codons to G-ending codons (de Miranda et al.,
2000). In eukaryotic repetitive elements, there is
a small subset of codons being reiterated within
homo-peptides (Faux et al., 2007). Synonymous
codon usage biases may be associated with various
other biological factors, such as: genome size (dos
Reis et al., 2004), gene length (Duret and Mouch-
iroud, 1999), amino acid composition (D’Onofrio
et al., 1999), local protein structure (Saunders and
Deane, 2010), codon context, biased gene conver-
sion (Harrison and Charlesworth, 2011), recombi-
nation rate (Zhou et al., 2005), gene translation initi-
ation signal (Qin et al., 2004), and length of 3’-UTR.
Global codon bias has been shown to correlate with
GC content (Ikemura, 1981a; Kanaya et al., 2001;
Knight et al., 2001), tRNA content (Kanaya et al.,
2001), and organism growth temperature (Lao and
Forsdyke, 2000), although the latter may influence
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selective forces on both mRNA structure (Lao and
Forsdyke, 2000) and codon bias (Lynn et al., 2002).

It is very difficult to know how all the evolu-
tionary and functional constraints interact and the
causality is often difficult to infer. For example,
while CG content may cause codon bias, codon bias
may act also in the opposite direction, influenc-
ing the nucleotide composition. It is unclear how
the two evolutionary processes of change in codon
usage and nucleotide compositions interact. The
causality of codon patterns continues to puzzle evo-
lutionary and molecular biologists.

Hopefully, new experimental technology will
help to disentangle some effects related to codon
bias. Here we continue by reviewing the wealth
of statistical measures that have been proposed to
measure codon bias.

13.3 Applications for indices of codon
usage bias

Codon usage indices are generated by a dedi-
cated function that maps some aspect of codon
usage, often the codon frequencies, to a single num-
ber. Codon usage indices have found a number
of applications, for example, several indices were
originally developed to assess the likelihood of
being in a certain protein-coding reading frame,
i.e. to recognize protein-coding genes. Open read-
ing frames (ORFs) containing a high incidence of
rare codons are unlikely to encode a protein, even
weakly expressed genes tend to have far fewer rare
codons than expected from the genomic frequen-
cies. This phenomenon has been used both to iden-
tify pseudo-genes and to detect DNA sequencing
errors resulting in the insertion or deletion of bases
within a coding sequence (Gribskov et al., 1984), as
well as to identify spurious ORFs (long sequences
that may be coding but have occurred by chance),
as they tend to have codon usage different from that
of verified ORFs (Ghaemmaghami et al., 2003).

Codon usage bias often differs significantly
among organisms. Hence, indices can be used for
detecting lateral gene transfer (Carbone et al., 2003;
Sugaya et al., 2004; Cortez et al., 2005; Tsirigos
and Rigoutsos, 2005; Bodilis and Barray, 2006) and
for the comparison of codon usage in different
organisms to study functional conservation of gene

expression across organisms (Lithwick and Mar-
galit, 2005).

As codon usage frequency has been shown to cor-
relate with protein and mRNA abundance in many
organisms, indices are also commonly used to pre-
dict and optimize protein expression levels, either
in the native organism or for heterologous expres-
sion of genes in foreign hosts. Codon optimized
genes are important both for biotechnological pro-
duction and for DNA vaccines (Ruiz et al., 2006).
Verification that the codon usage of the heterolo-
gous protein is similar to that of the host organism
is critical, since rare codons can have a detrimental
effect on protein yield. In addition to avoiding rare
codons, there are several other factors that must
be taken into account for the optimization of pro-
tein yield such as, translation initiation regions and
mRNA structural elements.

13.4 Previous studies of codon usage
indices

The correlation between several different indices
and experimental data, such as mRNA expression
levels or protein concentration, has been examined
in many studies (Comeron and Aguadé, 1998;
Coghlan and Wolfe, 2000; Goetz and Fuglsang,
2005; Supek and Vlahovicek, 2005; Tuller et al.,
2007; Suzuki et al., 2008), since the prediction of
expression levels is the aim of many researchers. As
most studies agree that highly expressed genes are
associated with codon usage biased towards usage
of the most frequent codons, many indices are built
on codon usage frequencies. The most commonly
used index is the Codon Adaptation Index (CAI by
Sharp and Li, 1987), which has consistently found
use as a predictor of gene expression levels. Since
the introduction of the CAI, many new measures,
which often compare favourably with the CAI,
have been developed and are described in the
following sections.

These studies usually examine the correlation of
the indices to absolute concentrations of mRNA
and protein, but not to the protein synthesis rate.
It can be argued that the underlying evolution-
ary pressure for high expression has also forced
mRNA and protein levels to correlate with the pro-
tein synthesis rate. Correlating indices to the rate of
protein synthesis is an alternative. Unfortunately,
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very few whole-genome datasets of protein half-
times, necessary for the prediction of synthesis rate,
are available (Belle et al., 2006).

13.5 Measures of codon bias

A large number of indices for measuring codon
usage bias have been proposed; some of the most
relevant and non-redundant ones are discussed
here.

There are several ways of classifying codon bias
indices. For example, one group of indices mea-
sures departure from the expected codon distrib-
ution (based on nucleotide frequencies). Another
group measures closeness to a hypothetical optimal
state of codons (or genes) and usually compares the
codon usage of a gene to the preferred codon usage
of a group of reference genes. It is possible to further
classify different groups in the reference class. Ref-
erences have been made to optimal codons, highly
expressed genes, a defined gene class, or all genes
in the genome. Not all indices are easily classifiable;
for example, several of the indices based on devia-
tion from expected value can be modified to allow
comparison to a reference set of highly expressed
genes. Herein, we have chosen to classify indices
based on historical and methodological similarities.

All amino acids with more than one codon
can show a bias. In order to create an index,
the contribution of each amino acid has to be
combined in a sensible way; for example, weighing
each amino acid contribution according to their
frequency in the gene. The degree of codon
degeneracy (one, two, three, four, or six codons per
amino acid) must be considered and the one-codon
amino acids (Met and Trp) excluded. Start codons
should be considered separately, since these are
often read by a special initiator tRNA and are often
excluded by many measures. Stop codons are also
often excluded for the same reasons and should
not be considered part of the coding sequence.
Many indices have difficulties in computing
accurate values for short sequences; therefore it is
recommended to avoid or be very cautious with
sequences shorter than 80–100 codons.

In this text, the notation of several indices has
been changed from the original publication, in
order to create a uniform notation and to better see
and understand the relationships between indices.

Table 13.1 Frequently used symbols

C entire set of codons

A set of amino acids

c index for codons

a index for amino acids

Ca codons used by amino acid a

oac count of codon c for amino acid a

ka number of synonymous codons of amino acid a (codon degeneracy)

L length of the sequence

Fa frequency of amino acid a

fac frequency of codon c encoding amino acid a

rac relative synonymous codon usage (RSCU) for codon c and amino

acid a

First, rather than using i for indexing codon and j
for amino acids, the subscripts c is used for the syn-
onymous codons of an amino acid, while a is used
for the amino acid. For example, oac is the observed
count of synonymous codon c of the amino acid
a . When indexing all 64 codons, c is again used.
A single index c points to any of the 64 codons.
The observed number of codons can be denoted by
the vector o = [o1, . . . , o64] of length 64, where the
elements are of the number of occurrences of the
codons. The number of codon occurrences o is also
indexed by the codon names; for example, oNNG is
the number of G-ending codons in a sequence. The
entire set of codons in an analysis is denoted by C .
The subset of synonymous codons used by amino
acid a is denoted by Ca . The number of synony-
mous codons of an amino acid is ka , also referred
to as codon degeneracy or codon redundancy. The
length of the sequence in number of amino acids
is L . The set of amino acids used by an index is
denoted by A, e.g. A1 is Alanine, etc. The usage of
hats for estimates (e.g. F̂ ) is avoided, since it is clear
from the context when the measures are estimates.

For an objective way of quantifying the per-
formance of indices, a framework for incorporat-
ing all aspects of protein synthesis from many
sources is desirable. Implementations of indices
exist in various packages and as stand-alone pro-
grams. The program suite CodonW (Peden, 2000)
has implemented and documented some of the
existing indices. Unfortunately, it appears that there
is little momentum in the development of CodonW,
even though it is an open source project. There
are several other programs for computing codon
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indices: INCA by Supek and Vlahovicek (2004)
and GCUA by McInerney (1998). Implementations
also exist in libraries of common programming lan-
guages, such as, BioPerl by Brenner et al. (2002),
seqinR by Charif et al. (2005), and EMBOSS by Rice
et al. (2000). Easy access under one framework to the
bulk of codon usage bias indices would facilitate
comparison, benchmark studies and performance
analysis.

13.5.1 Relative codon frequencies

Many indices often require the codon counts to
be normalized into codon frequencies to remove
the dependence on gene length. Frequencies can be
computed in a number of ways. The simplest way is
to normalize by the sum of all codons in the vector:

gc =
oc

∑

c∈C
oc

, (13.1)

where g denotes a global frequency.
This can also be expressed in the double-index

notation:

gac =
oac

∑

a∈A

∑

c∈Ca

oac
. (13.2)

This normalization has the problem that it will
overweight frequent amino acids. It is therefore
usually better to normalize within each amino acid
separately to avoid the confounding influence of
amino acid content:

fac =
oac

∑

c∈Ca

oac
(13.3)

where f denotes the frequency within amino
acid a.

The relative synonymous codon usage (RSCU)
compensates for both the different number of syn-
onymous codons for the various amino acids, as
well as for the differing amino acid frequencies:

rac =
oac

1
ka

∑

c∈Ca

oac
=

oac

oa
, (13.4)

where ka is the number of synonymous codons and
r denotes a relative synonymous frequency (Sharp
et al., 1986).

The RSCU values express the relationship
between the observed number of codons and the

number of times the codon would be observed if
the synonymous codon usage was completely ran-
dom (no codon usage bias). For average synony-
mous codon usage (no codon bias) the RSCU is 1.
For codon usage more infrequent than the average
codon usage, the RSCU is less than one, and for
more frequent usage than the average for the amino
acid, the RSCU is greater than 1.

Another way of normalizing the data is to use the
relative adaptiveness, w, in which the frequency of
each synonymous codons is normalized by the fre-
quency of the most frequent codon. Thus the most
frequent codon will have a relative adaptiveness of
1, while the others will have a relative adaptiveness
of less than one. The relative adaptiveness is:

wac =
oac

max
c∈Ca

oac
. (13.5)

Amino acids decoded by one codon (Trp and
Met for the standard genetic code) also have a rel-
ative adaptiveness of 1 and are often neglected, as
they do not contribute additional information. Stop
codons are also often disregarded, since their occur-
rence is rare compared to other codons and usually
strongly biased toward one codon.

13.5.2 Measures based on reference

Many indices compare the query gene to a refer-
ence set of genes with some desirable quality. The
idea is that certain profiles of codon usage are opti-
mal. Assignment of optimal codons requires strong
assumptions, since the factors shaping the codon
usage may differ among genes and genomes. The
reference set can be defined from either first prin-
ciples (e.g. Fop) or using a reference set of highly
expressed genes (e.g. CAI). Highly expressed genes
are under stronger translational selection and the
synonymous codons are under stronger selective
constraints.

13.5.2.1 Frequency of optimal codons (Fop)
The frequency of optimal codons (Fop), the ratio
of the number of optimal codons used to the total
number of synonymous codons, was one of the first
codon usage measures proposed (Ikemura, 1981b).

The optimal codons can be defined according
to nucleotide chemistry, codon usage bias, or
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tRNA availability. In short: (1) pyrimidine two-
codon amino acids prefer A-ending codons over
G-ending; (2) purine two-codon amino acids prefer
C-ending codons over U-ending; (3) if there exists
a tRNA with inosine, the wobble position prefer U-
and C-ending codons over those with A-endings;
(4) codons with higher tRNA abundance are
preferred; and (5) codons that are decoded by
more than one different tRNA isoacceptors. The
constraint of tRNA abundance is probably the most
important constraint (Ikemura, 1985). Therefore, a
convenient way to define translationally optimal
codons is those codons that are cognate to the most
abundant tRNA isoacceptor in each codon family.
The tRNA abundances can be inferred from the
tRNA gene copy number of genome data. Since
tRNA abundance and codon usage are highly
correlated, optimal codons can be alternatively
defined as those that are the most common.

The frequency of optimal codons is the ratio of
the number of optimal codons to the total number
of codons:

Fop =
oopt

otot
. (13.6)

The number of optimal codons is:

oopt =
∑

c∈Copt

oc . (13.7)

The subset of optimal codons, Copt, is defined
according to the above criteria, from all the codons
C that are included in the analysis. Amino acids
with one codon do not contribute any information
and are omitted. Amino acids with one isoacceptor
are often excluded when the optimal codon can not
be determined. The total number of codons in a
sequence otot is the total number of codons included
in the analysis.

13.5.2.2 Codon bias index (CBI)
The codon bias index also measures the extent to
which preferred codons are used in a gene (Ben-
netzen and Hall, 1982). The preferred codons are
defined as codons frequent in highly expressed
genes and codons cognate to the major tRNA
species. It is similar to Fop, but uses the expected
usage as a scaling factor and thus is normalized
between −1 and 1. A value of 1 means only pre-
ferred codons are used, zero means random choice

and less than zero implies greater use of non-
preferred codons:

CBI =
oopt − erand

otot − erand
, (13.8)

where oopt is the number of preferred optimal
codons, otot is the total number of codons, and erand

is the expected number of optimal codons if random
codon assignments were made for each amino acid.

erand is used to account for the random effect of
codon usage and is computed as follows:

erand =
∑

a∈A

oa
nopt

a

ka
, (13.9)

where oa is the number of occurrences of amino acid
a in the sequence, nopt

a is the number of instances of
optimal codons for amino acid a , and ka the codon
redundancy.

Amino acids with only one codon are excluded
from the analysis, as are occasionally amino acids
that show little preference towards a single codon
(e.g. Asp in Yeast).

13.5.2.3 Codon usage bias (B)
The codon usage bias (B) assesses the codon bias of
a test set of genes (or group of genes) relative to a
second reference set of genes (Karlin and Mrázek,
1996; Karlin et al., 1998). The reference set, com-
posed of a gene class, an entire genome, or a single
gene, is used as a standard to which other genes
or groups of genes can be compared. This metric is
defined as the amino acid frequency weighted sum
of distances of the relative codon usage frequencies
between the two sets, f and f ref:

B =
∑

a∈A

Fa d(fa , fref
a ), (13.10)

where Fa is the frequency of the amino acid a in the
test set, vectors fa and fref

a are the codon frequency
vectors for amino acid a in the test and reference set
respectively, and d is the 1-norm distance between
the codon vectors of amino acid a :

d(fa , fref
a ) =

∑

c∈Ca

| fac, f ref
ac | (13.11)
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The possible values of B range from 0 to 2, rarely
exceeding 0.5. The B measure is also referred to as
the codon usage bias CUB.

The codon bias similarity statistic of Gladitz
et al. (2005) resembles the B measure in several
aspects. It differs in that it uses the square of
the distance rather than the distance, emphasizing
larger differences over many smaller differences.
A weighting factor used also places higher weights
on the 2-codon amino acids, since they are consid-
ered to have a more reliable signal.

The B measure can be used to infer the expression
level by comparing the fraction of the distance of
the query set with respect to all genes over the dis-
tance to a reference set, or a linear combination of
reference sets (Karlin and Mrázek, 2000). Using the
B measure in this way is then called the E measure
(E for expression):

E =
B(all)
B(ref)

. (13.12)

13.5.2.4 Codon-enrichment correlation (CEC)
Codon usage in bona fide coding regions deviates
from that in randomly generated sequences. There
is a preference in amino acid composition as well
as bias in the usage of synonymous codons. The
codon enrichment correlation is the linear corre-
lation coefficient of the codon enrichment vector
E = {Ec∈C } between an ORF and a reference set of
genes (Ghaemmaghami et al., 2003). This reference
set is based on all the ORFs that can confidently
be assumed to be real coding sequences. The codon
enrichment correlation is computed by:

CEC = corr(Eorf, Eref). (13.13)

The enrichment of each codon for the positive set
is defined as the ratio of its frequency among the
named ORFs by its expected frequency in random
sequences:

Ec =
fc

ec
, (13.14)

where fc are the codon frequencies and the
expected random codon usage ec = b1b2b3 is calcu-
lated as a product of the three nucleotide frequen-
cies in codon c. The base frequencies can be taken
from either the global nucleotide distribution in

coding sequences or, alternatively, assigned using
codon position specific nucleotide distribution.

The codon enrichment for the reference set (Eref)
is computed using the relative codon frequencies of
all the ORFs in the reference set. The codon enrich-
ment for an ORF (Eorf) is computed using the codon
frequencies of the gene itself.

Together with expression data, CEC can be used
to identify spurious open reading frames and can
be used to detect incorrectly assigned ORFs that
are not coding for a protein (Ghaemmaghami et al.,
2003): if a sequence is not detected experimentally
and the CEC is lower than the cutoff value, then the
ORF is designated as spurious.

13.5.3 Measures based on the geometric
mean

Most indices compute the contribution to the index
value for each amino acid individually and then
combine them in a second step. The differences
between the indices result from differences in these
two steps. Many indices use the geometric mean to
combine the contribution of each amino acid and
differ in the method used to compute contribution
of each amino acid.

Most methods sum over the contribution from
each amino acid rather than over the length of the
sequence, which is essentially the the same, but
conveniently then only the codon count vector is
required.

13.5.3.1 Codon preference (P)
The codon preference P is a measure of the like-
lihood of a particular set of codons to a prede-
termined preferred usage (Gribskov et al., 1984).
Originally P was computed for all three reading
frames using a sliding window, and was used for
locating genes and for detection of frame-shifts. The
window size L was chosen to be small enough
to discriminate genes from non-genes (L = 25 for
genes smaller than 5000 bp and L = 50 otherwise).
Here P is used as an index for known sequences
and with a window of size L that covers the entire
coding sequence. A window size smaller than the
total gene length can be used to normalize P, so that
it is less dependent on the length of the gene.
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The likelihood ratio wP
ac is the ratio of the

frequency of observing a codon in a gene to the fre-
quency of it being found randomly in the sequence
based on the individual nucleotide frequencies in
the sequence:

wP
ac =

fac

eac
. (13.15)

Note that we reuse the symbol w to denote the like-
lihood ratio. In Section 13.5.1 it is used for relative
adaptiveness. The reason for this is that we want
to emphasize the methodological similarities of the
indices in this section.

The frequencies fac are the relative frequencies of
codons, while the random codon usage is computed
as eac = b1b2b3, where bi is the nucleotide frequency
of the ith base of the codon of interest.

To compute P for a gene, we take the product
of the likelihood ratios or better, the sum of log-
likelihoods:

P = (
L∏

i=1

wP
c (i))

1
L = exp(

1
L

L∑

i=1

log wP
c (i)) (13.16)

13.5.3.2 Codon adaptation index (CAI)
The codon-adaption index is the most frequently
used measure of codon usage bias (Sharp and Li,
1987). The CAI is similar to the codon preference
statistic (Gribskov et al., 1984) but instead of using
the ratio of the likelihood of finding a codon in a
highly expressed gene versus that of finding the
codon in a random sequence, the CAI uses the rel-
ative adaptiveness (defined in Equation 13.5). The
CAI defines translationally optimal codons as those
that appear frequently in highly expressed genes
(Sharp and Li, 1987).

The relative adaptiveness is computed from a
defined subset of translationally optional codons,
usually taken from genes that are highly expressed.
Alternatively, the relative adaptiveness can be com-
puted without knowledge of highly expressed
genes using an iterative procedure that computes
the relative adaptiveness from the dominating
codon bias of the organism (Carbone et al., 2003). It
is also possible to use the codon frequencies of the
ribosomal proteins that are known to have gener-
ally high expression.

CAI is computed as the geometric mean of the
relative adaptiveness for each codon, rac :

CAI =
( L∏

i=1

wc(i)
) 1

L = exp
( 1

L

L∑

i=1

log wc(i)
)

(13.17)

This is equivalent to computing CAI from the ratio
of the number of codons over the maximum num-
ber of codons (of the amino acid) that exists in query
gene:

CAI =
exp( 1

L

∑L
i=1 log oref

ac (i))

exp( 1
L

∑L
i=1 log oref

a ,max(i))
. (13.18)

Commonly CAI is computed by summing over
the codons usage vector rather than over the length:

CAI = exp(
1

otot

∑

c∈C

oc log wc). (13.19)

Later improvements to CAI have targeted irregu-
lar cases that can cause errors (Xia, 2007) such as the
problem encountered with amino acids that have
a single codon, amino acids that are encoded by
two separate codon families, or when the relative
adaptiveness for a codon is zero.

13.5.3.3 Relative codon usage bias (RCB)
The relative codon usage bias (RCB; Roymondal
et al., 2009) is a measure that defines the contribu-
tion of the codons as:

wRCB
c =

oc − E[oc]
E[oc]

, (13.20)

where oc is the observed number of counts of codon
c of the query sequence and E[oc] is the expected
number of codon occurrences given the nucleotide
distribution at the three codon positions (b1b2b3).

RCB has the advantage that it does not rely on
having a reference set. Unfortunately this index has
the drawback that it depends on sequence length as
pointed out by Fox and Erill (2010). The value of the
index is over-estimated for short sequences. A pos-
sible remedy for this may be to introduce pseudo
counts for short sequences based on the global
codon and nucleotide distribution (Fox and Erill,
2010). Subtracting 1 from the result is used to shift
the values such that zero indicates a lack of bias:
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RCB = exp(
1

otot

∑

c∈C

log wRCB
c ) − 1. (13.21)

13.5.3.4 Relative codon adaptation (RCA)
The relative codon adaptation (RCA) index reuses
the same idea as RCB to define the contribution of
the codons but uses a subset of reference sequences
(Fox and Erill, 2010). These can be taken either from
expression data or determined by using methods to
estimate the dominating codon bias (Carbone et al.,
2003). RCA, like RCB, has a possible advantage
over CAI, in the sense that it considers the under-
lying nucleotide distribution at the three codon
positions.

13.5.3.5 Relative codon adaptation index (rCAI)
The relative CAI takes the background codon usage
into account by using the two non-coding frames
(Lee et al., 2010). The relative adaptiveness of each
codon, wrel

c , is computed by normalizing with codon
usage in the +1 and +2 reading frames:

wrel
c =

w0
c√

w+1
c

√
w+2

c

. (13.22)

rCAI was developed as a way to better discrimi-
nate between highly biased and unbiased genomic
regions, i.e. to capture local codon bias patterns.
Signals of codon bias are often found by smooth-
ing over a region, since variation among individ-
ual codons is large. Investigation of codon bias in
smaller regions can benefit from this noise reduc-
tion and signal improvement. It appears that a
selective force is keeping codons in the +1 and
−1 frames non-optimal, possibly preventing frame-
shifts during translation elongation.

13.5.3.6 An iterative approach to determining codon
bias (GCB)
Rather than comparing codon usage to a predefined
optimal set of genes, the GCB method iteratively
recomputes the top scoring genes to define a ref-
erence set of biased genes (Merkl, 2003; similar to
the approach by Carbone et al., 2003). The iteration
continues until convergence and the stop condition
remains unchanged (within a tolerance). To avoid
overweighting rare codons, the ratio of codon fre-
quencies has a lower limit of −5. If a set of genes
that are known to be highly expressed, e.g. protein

participating in the translational process, then this
set can be used as a starting point. From the fixed
set of reference genes, species-specific scores are
computed. The scores for codon c are defined as:

wGCB
c =

f ref
c

f all
c

, (13.23)

where f ref
c is the codon frequency in the set of ref-

erence genes from the genome and f all
c is the mean

frequency of codon c.
Once the CB scores have been fixed, the GCB

score of an individual gene can be computed
as below. In the original publication the authors
have omitted the back-transformation from the log-
space:

GCB =
1

otot

∑

c∈C

log wGCB
c . (13.24)

13.5.3.7 tRNA adaptation index (tAI)
The tRNA adaptation index is motivated by the
assumption that tRNA availability is a driving force
for translational selection. The tRNA adaptation
index estimates the extent of adaptation of a gene to
its genomic tRNA pool (dos Reis et al., 2003, 2004).
It is inspired by and reuses the same idea as the
CAI by integrating the degree of adaptation of all
codons. It mainly differs from the CAI and the P
index in how the relative adaptiveness w is com-
puted. First, the absolute adaptation Wc for codon c
is computed:

Wc =
∑

t

(1 − sct)Tct. (13.25)

The index t is summed over all the isoacceptor
tRNAs that can recognize codon c and sct is the effi-
ciency of the codon–anticodon coupling (dos Reis
et al., 2004). Tct is the number of copies of the tRNA
t that recognizes codon c. The relative adaptiveness
is normalized to the absolute relative adaptiveness,
by dividing with the maximum Wc value of the
corresponding amino acid:

wtAI
ac =

Wac

max
c∈Ca

Wac
. (13.26)

If Wc is zero, then the mean wmean of the relative
adaptiveness is used. Finally, the tAI of a gene is
computed as the geometric mean of the relative
adaptiveness values of its codons n:
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tAI = exp
( 1

otot

∑

c∈C

oc log wtAI
c

)
. (13.27)

One drawback of tAI is that it requires infor-
mation that may not be known. Computation of
the tAI requires: the codon recognition of tRNA,
the properties of anticodon–codon interaction, the
correct annotation of tRNA genes, and a subset of
highly expressed genes (or alternatively a method
to determine optimal codon frequencies). The val-
ues of the anticodon–codon affinity sct may also be
difficult to assign correctly. Expression data is used
to find the best correlation between expression lev-
els and tAI values and from this the values for the
possible anticodon–codon binding are derived. For
humans, these values were found to be: G:U=0.41,
I:C=0.28, I:A=0.99, U:G=0.68, L:A=0.89 (dos Reis
et al., 2004). Furthermore, it is unclear if the accu-
racy of this information is adequate to give reli-
able values of tAI. On the other hand, when this
information was available, the index has performed
favourably (Tuller et al., 2007).

13.5.4 Measures based on deviation from an
expected distribution

There is a large group of indices that measure
deviation from the expected distribution of codons.
These indices have the advantage of being eas-
ily understood from a statistical perspective. If the
expected distribution can be estimated and a model
formulated, the significance analysis and statistical
tests can be performed, lending a big advantage.

13.5.4.1 Codon-preference bias measure (CPB)
The codon preference bias (CPB) measures how far
observed codon usage deviates from the theoretical
mean (McLachlan et al., 1984). The CPB is not used
often, perhaps due to the fact the method is quite
theoretical and not very straightforward to imple-
ment. Like the P measure, it was used to detect
bona fide coding sequences:

CPB =
U − U

ÛU
. (13.28)

The CPB measures the improbability of codon
usage U, which is the negative log of the probability
of observing a particular codon count vector:

U = − log M(o). (13.29)

The log transform of the codon count values
accounts for the skew of the distribution. The dis-
tribution of a codon vector is computed from the
multinomial distribution:

M(o) =
otot!

∏

c∈C
(oc !)

∏

c∈C

f oc
c , (13.30)

where oc is the observed counts of codons in the
sequence, fc is the expected frequency, and otot is
the total sum of codon counts.

The expected frequency of codon c can be com-
puted in several ways. The authors have cho-
sen this to be equal for all synonymous codons,
but arguably relative frequencies may be a better
choice. The total number of codon counts otot can
be quite large, making the probability distribution
of U difficult to compute. Therefore, the authors
apply an approximation based on the Poisson dis-
tribution.

13.5.4.2 Maximum-likelihood codon bias (MCB)
The Maximum-likelihood codon bias is useful to
test a variety of null hypotheses (Urrutia and Hurst,
2001). The method is designed to account for back-
ground nucleotide composition and can also be
adopted to correct for di-nucleotide biases. The
MCB is not strictly a maximum-likelihood method,
but the weight of each amino acid is estimated by
the likelihood of occurrence of each amino acid
given its frequency and codon degeneracy:

MCB =
∑

a∈A

Ba log oa

otot
, (13.31)

where oa is the number of occurrences of amino acid
a and otot is the total number of amino acid instances
used to compute the index.

The more frequent the amino acid, the more
prominent the bias. In such cases the compensa-
tion is logarithmic rather than linear, so as to not
overemphasize for very frequent amino acids. Ba is
the bias of an individual amino acid:

Ba =
∑

c∈Ca

(oc − ec)2

ec
. (13.32)

This is a ˜2-test using the observed oc and expec-
ted ec counts for each synonymous codon c.
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To compute the expected values of codon counts,
the nucleotide frequencies within a redundancy
class (and the super-groups with larger size) are
used. The classes are grouped according to the
nucleotide at the third position (NNY, NNR, NNH,
and NNN). To minimize uncertainty, all cases with
less than 30 included sites are eliminated. The
authors note that dinucleotide bias is not taken into
account with this model.

13.5.4.3 The scaled ˜2 statistic
The ‘scaled’ ˜2 is a measure of the bias in silent
codon usage (Shields et al., 1988). It is computed as
the deviation from the equal usage of synonymous
codons divided by the total number of codons in the
gene. That is, it is scaled by gene length:

˜2 =
1

otot

∑

a∈A

∑

c∈Ca

oac − k−1
a

k−1
a

, (13.33)

where oac is the frequency of occurrence of codon c
in amino acid a and ka is the degeneracy of amino
acid a .

Amino acids with single codons (Trp and Met)
are excluded. The scaled ˜2 uses the deviance
from equal usage of codons, rather than from
the expected distribution of codons given the
nucleotide distribution.

13.5.5 Measures based on information theory

Methods originating in statistical linguistics and
information theory have also been used for the
analysis of DNA sequences (Rao et al., 1979;
Konopka, 1984; Pavesi, 1999; Wang et al., 2001; Frap-
pat et al., 2003). Zeeberg (2002) characterized codon
usage bias based on the concepts of the Shannon
information theory (Shannon, 1948). In the follow-
ing subsections, two methods based on entropy are
discussed.

13.5.5.1 Weighted sum of relative entropy (Ew)
Suzuki et al. (2004) suggested a logically sound
usage of entropy in which the weighted sum of rel-
ative entropy is used to measure the degree of devi-
ation away from equal codon usage. It is suggested
that by using only the information in the gene
under consideration, the measure is less depen-
dent on biological assumptions, such as mutational

biases and translational selection. They propose an
index that takes into account the number of dis-
tinct amino acids, their relative frequencies, and
their degree of codon degeneracy. This index, the
weighted sum of relative entropy (Ew), is the sum
of the relative entropy of each amino acid weighted
by its relative frequency in the sequence and is com-
puted as:

Ew =
∑

a∈A

Fa Ea , (13.34)

where Fa is the relative frequency (the weight) of
the amino acid in the sequence.

The relative entropy Ea is computed by normal-
izing the entropy Ha by the maximum entropy
max(Ha ) = log2 ka :

Ea =
Ha

max(Ha )
=

Ha

log2 ka
. (13.35)

Ha is the entropy that measures the uncertainty of
codon usage in the sequence for amino acid a:

Ha = −
∑

c∈Ca

fac log2 fac . (13.36)

As with many other indices, the sequence needs
to be sufficiently long to avoid stochastic sampling
effects. Potential drawbacks may be that Ew does
not consider which codons are used and that two
sequences may have identical Ew values but differ-
ent codon usage bias.

13.5.5.2 Synonymous codon usage order (SCUO)
The synonymous codon usage order is an entropy-
based measure of codon bias (Wan et al., 2004). It
is very similar to Ew and differs only in the way
the entropy of each amino is computed. Instead
of computing the relative entropy, the authors use
the normalized difference between the maximum
entropy and the observed entropy:

Ea =
max(Ha ) − Ha

max(Ha )
=

log2 ka − Ha

log2 ka
. (13.37)

The SCUO can be computed just as Ew:

SCUO =
∑

a∈A

Fa Ea . (13.38)

An online server, CodonO, is available for comput-
ing SCUO (Angellotti et al., 2007).
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13.5.6 Measures focusing on tRNA interaction

Many indices focus on the tRNA usage as the limit-
ing factor. During the translational elongation step,
an mRNA is at the ribosome with a codon in the
ribosomal A-site. Ternary complexes composed of
aminoacyl–tRNAs bound with elongation-factor Tu
and GTP are thought to diffuse into the vicinity of
the A-site and interact with the codon. If the codon
in the A-site does not match the anticodon of the
tRNA, it diffuses away and the process repeats until
the correct tRNA is in position. At this time, elon-
gation can occur. The indices are then based on the
average number of codon–tRNA interactions dur-
ing one elongation cycle. Several indices mentioned
in other sections such as the tAI and Fop also have
this property.

13.5.6.1 P1 index
The P1 index is a measure of the influence of tRNA
availability (Gouy and Gautier, 1982) and measures
the mean of the number of tRNA–codon interac-
tions necessary for a correct recognition for a step
in the elongation cycle. The influence is based on a
simple model of protein synthesis dynamics, which
relies on two strong assumptions. It assumes that all
isoacceptor tRNAs have equal binding properties to
all the codons they recognize and that the durations
of the non-specific tRNA–codon interactions are all
equal.

The probability pc of a correct recognition of
codon c is calculated from the relative concentra-
tions of isoacceptor tRNA. These must have either
been determined experimentally or predicted using
the gene copy number as a proxy. The mean num-
ber of tRNA–mRNA interactions at the A-site of
the ribosome is the inverse of pc . For a gene, P1
is computed for each codon weighted by the cor-
responding codon frequency fc :

P1 =
∑

c∈C

fc

pc
. (13.39)

Genes that are optimized for a small number of
tRNA discriminations are often highly expressed.

13.5.6.2 P2 index
The aim of the P2 index is to measure the bias
for anticodon–codon interactions of intermediary

strength (Gouy and Gautier, 1982). P2 is the fraction
of pyrimidine-ending codons that have interme-
diate strength. Pyrimidine-ending codons always
decode the same amino acid (if the two first posi-
tions of the codon are identical) and are almost
always recognized by one tRNA isoacceptor. This
is not true for purine-ending codons. If the first
two positions of the codon are weakly binding
nucleotides (W = A or T) then there is a bias for a
strong nucleotide at the third position (S = G or C)
and vice versa. The P2 index is:

P2 =
oWWC + oSSU

oWWY + oSSY
(13.40)

and its values have been shown to be high
for highly expressed genes and low for lowly
expressed genes (Gouy and Gautier, 1982).

13.5.6.3 tRNA-pairing index (TPI)
The tRNA pairing index is a measure of synony-
mous codon ordering comparing of the number of
changes of tRNA in a coding sequence to the total
number of expected changes given a random dis-
tribution of the existing codons. It is worth empha-
sizing that the codons are not consecutive in the
sequence but consecutive codons that encode the
same amino acid. To understand the computation
of the TPI, assume an example of an amino acid that
occurs seven times and is translated by two tRNAs,
A and B. The seven codons are extracted from the
string and represented by their translating tRNA,
e.g. ABBAABB. The most correlated sequences are
AAABBBB and BBBBAAA. The most anticorrelated
sequence is BABABAB. The number of changes of
tRNA in the string quantifies the changes for this
amino acid (e.g. six changes for BABABAB). This
number is summed for all amino acids with at least
two codons and two tRNAs. In yeast these are: Ala,
Arg, Gly, Ile, Leu, Pro, Ser, Thr, Val.

To assess the significance, the observed num-
ber of changes is compared to the distribution of
expected changes given the coding sequence and
using the genome-wide codon frequencies. For each
amino acid, the number of different tRNAs and the
number of times they occur in the coding sequence
are used to compute the expected frequency of
occurrence for each possible number of changes.
Efficient recursions of these distributions have been
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shown Friberg et al. (2006). This results in nine dis-
tributions for the nine relevant amino acids. These
distributions are then convolved to give a distribu-
tion of total expected number of changes. The value
of the TPI is:

TPI = 1 − 2p, (13.41)

where p is the value of the cumulative density
function at the point of the observed number of
changes.

This normalization results in a TPI value of 1 for
a completely ordered sequence and a TPI of −1 for
a completely unordered sequence. The average TPI
of the Saccharomyces cerevisiae genome was found to
be 0.124, biased toward ordering of the codons by
their decoding tRNA (Cannarozzi et al., 2010).

13.5.7 Measures based on intrinsic properties
of codon usage

Some measures that do not fall into the common
categorizations of methods are described here.

13.5.7.1 Base composition at silent sites
There is selection for optimal codons in highly
abundant proteins. These codons tend to have
pyrimidines at the third position, in particular C.
Therefore, GC content at silent sites is often cor-
related with gene expression (Shields et al., 1988).
Multivariate analyses of codon usage often gives
the result that nucleotide content at the third-codon
position corresponds to the first principal com-
ponent, and thus, explains the largest fraction of
the variance. Much evidence of selection acting on
silent-site base composition exists (Stenico et al.,
1994; Eyre-Walker, 1999). The G and C nucleotides
are strong, that is, they bind more strongly to each
other than A and T and non-Watson–Crick base
pairings. Hence, they are likely to be more influen-
tial on codon usage.

The base composition at silent sites measures the
GC content at the third position of synonymous
codons (GC3s) and can be used as an index of codon
bias. Amino acids with six codons need special han-
dling. They have to be divided into two groups:
one of size four and one of size two, where the
nucleotides at the two first positions are identical.
The following formula describe the GC content at

the third codon position, excluding non-degenerate
codons:

GC3s =
oNNS

otot
, (13.42)

where oNNS is the number of G- or C-ending codons
(S = strong).

It is certainly possible to measure any nucleotide
fraction content, but GC3s is the most common.

13.5.7.2 Effective number of codons (Nc)
The effective number of codons (Nc) is the total
number of different codons used in a sequence
(Wright, 1990). The values of Nc range from 20,
where only one codon is used per amino acid, to
61 (for standard genetic code), where all possible
synonyms codons are used with equal frequency.
Nc measures bias toward the use of a smaller subset
of codons, away from equal use of synonymous
codons. For example, as mentioned above, highly
expressed genes use fewer codons due to selection.

The underlying idea of Nc is similar to the con-
cept of zygosity from population genetics, which
refers to the similarity for a gene from two organ-
isms. In the context of codon usage, multiple
synonymous codons are treated analogously to
multiple alleles. Homozygosity for an amino acid
Za measures the degree of similarity and is com-
puted based on the relative codon frequencies fac :

Za =
oa

∑
c∈Ca

f 2
ac − 1

oa − 1
. (13.43)

The number of effective codons for an amino acid is
the inverse of homozygosity:

Na = Z−1
a . (13.44)

The value of Na ranges from 1 to the number of
synonymous codons ka (the codon degeneracy).
With equal codon usage, homozygosity is minimal
and the value of Na is the number of synonymous
codons. The overall number of effective codons for
a gene (Nc) is a sum of average homozygosities Za

for different redundancy classes k (in set K of all
redundancy classes):

Nc =
∑

k∈K

nk Na=k, (13.45)
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where for each redundancy class:

Na=k =
1
nk

∑

a∈Kk

Na . (13.46)

When the codon usage pattern is more uniform
than expected, it is possible to obtain Nc > 61, in
which case it is readjusted to 61. If an amino acid
is not observed, or is very rare, then the value is
replaced by the average homozygosity of the amino
acids in the same redundancy class. If Ile is miss-
ing (the only member in the redundancy class with
three synonymous codons), then the corresponding
Z is estimated from the average homozygosity of
the other redundancy classes (Fuglsang, 2004). For
example, in the case of isoleucine:

Zk=3 =
1
3

(
(

2

Zk=2
− 1)−1 + (

2

3Zk=4
− 1

3
)−1

+ (
2

5Zk=6
− 3

5
)−1

)
(13.47)

When there is a large discrepancy among the
amino acids for a gene, the sum of Nc for all indi-
vidual amino acids can be used instead of taking
the sum of the averages of each redundancy class
(Fuglsang, 2004):

Nc =
∑

a∈A

Na . (13.48)

Novembre (2002) proposed a modification of Nc
to account for biased background nucleotide distri-
bution. It may be particularly important for phy-
logenetic studies where the nucleotide distribution
may differ among organisms. Novembre uses Per-
son’s ˜2 statistic to describe departure of codon
usage from the expected regarding the nucleotide
distribution.

Nc is a popular index, perhaps due to the fact
that the resulting values are easy to interpret, and
no knowledge of optimal codons is required.

13.5.7.3 Measure independent of length and
composition (MILC)
The MILC is a measure that aims to be independent
of gene length and nucleotide composition, as indi-
cated by its name (Supek and Vlahovicek, 2005):

MILC =
1
L

∑

a∈A

Ma − K , (13.49)

where L is the number of codons in the sequence,
Ma is the goodness of fit test of the observed codon
usage to the expected, and K is a correction factor
described below.

Ma is based on a log-likelihood ratio similar to the
statistical G-test of goodness of fit:

Ma = 2
∑

c∈Ca

oac log
oac

eac
. (13.50)

The expected number of codons eac can be com-
puted in several ways, the simplest being the
assumption of equal codon usage. The correction
factor K is used to compensate for sampling errors
in short sequences where the number of observa-
tions is small:

K =
1
L

∑

a∈A

(ka − 1) − 1
2
. (13.51)

The last term 1
2 is to compensate for extremely

unbiased genes as to avoid negative values of
MILC.

MILC is used for the prediction of expression
level by taking the ratio of the MILC of a gene
to the MILC of a reference set of highly expressed
proteins, e.g. ribosomal proteins:

MELP =
MILC(gene)

MILC(ref) . (13.52)

13.5.7.4 Intrinsic codon bias index (ICDI)
The ICDI is an index that does not require knowl-
edge of the optimal codons (Freire-Picos et al., 1994).
In this sense, it is related to Nc. The value of ICDI
ranges from 0 for equal usage to 1 for extremely
high-biased genes. The authors estimate that, in
general, a bias over 0.5 is high and a bias below 0.3
means little bias (in fungi). The ICDI, a relatively
simple index that is highly correlated with Nc and
CBI, is computed based on Sa values for each of the
18 amino acids with k-fold degeneracy:

Sa =
1

ka (ka − 1)

∑

c∈Ca

(rac − 1)2, (13.53)

where rac is the relative synonymous codon usage
and ka is the degeneracy of amino acid a in the
sequence.

The value of the index is then computed as:

ICDI =
∑

a∈A

Fa Sa . (13.54)
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The ICDI gives equal weight to all amino acids
included, that is, all values of Fa are 1

18 .

13.5.7.5 HK measure
The HK measure, named by the initials of the
authors, relies on a multivariate statistical method
(Hey and Kliman, 2002). First, the variation caused
by nucleotide content and gene length is removed
by regression, using the synonymous codon fre-
quencies and the GC content from non-coding
DNA, as well as the length of the protein. The
residual variation after the regression is then used
for factor analysis. The HK measure is the primary
factor from the factor analysis.

13.5.7.6 Strength of mRNA secondary structure
There are many indications that the effects of sec-
ondary mRNA structures have to be taken into
account (Iserentant and Fiers, 1980). The strength
of folding from positions −4 to +38 relative to the
initiation codon in the mRNA influences protein
expression levels (Kudla et al., 2009). If the ribosome
cannot access its binding site because of mRNA sec-
ondary structure formation, initiation is prolonged
and expression of protein is hampered. Methods for
codon optimization utilize folding programs to pre-
dict the occurrence of mRNA structures that have
strongly-bound folding patterns (Freyhult et al.,
2005).

13.5.7.7 Evolutionary rate (ER)
The use of the evolutionary rate for codon usage
(denoted ER), was motivated by the observation
that codon usage is similar in closely related species
and changes much more dramatically over large
evolutionary distances and thus is correlated with
evolutionary distance (Grantham et al., 1981). As
highly expressed genes evolve more slowly, the
evolutionary rate can be used to predict the level
of expression.

Wall et al. (2005) estimated evolutionary rates in
four yeasts and examined the correlation between
evolutionary rates and both expression level and
protein dispensability, which was estimated by the
growth rate of mutants deficient for the protein.
They found that dispensability and expression both
have independent and significant effects on the rate
of protein evolution, although they could not yet

accurately estimate the relative strengths of these
effects.

Drummond et al. (2006) used principal compo-
nent analysis of seven predictors (gene expression
level, dispensability, protein abundance, codon
adaptation index, gene length, number of protein–
protein interactions, and the gene’s centrality in the
interaction network) to find which had the largest
effect on protein evolutionary rates. They found
that the dominant component is almost entirely
determined by the gene expression level, protein
abundance, and codon bias as measured by the
CAI.

13.5.7.8 Codon volatility
The codon volatility measures the proportion of the
point-mutation neighbours of a codon that encodes
different amino acids (Plotkin and Dushoff, 2003). It
is based on the observation that codons differ with
respect to the likelihood that a point mutation will
cause a nonsynonymous mutation.

The volatility v(c) of a codon c is defined as the
sum over all one-point neighbouring codons of the
distances between corresponding amino acids:

v(c) =
9∑

i=1

d(A(ci ), A(c)), (13.55)

where A(c) is the amino acid of the corresponding
codons, and d quantifies the distance between two
amino acids.

The simplest distance is the hamming distance:
zero if the amino acids are the same, one if they are
different. Alternatively, the Miyata metric can be
used, which measures the impact of the hydropho-
bicity and volume of an amino acid (Miyata et al.,
1979). The distance from any amino acid to a stop
codon is dependent on the application of the index.
In the original publication, zero was used but this
may not be biologically valid. The significance of
the observed volatility can be computed by compar-
ing it to a bootstrap distribution of alternate syn-
onymous sequences, based on the genomic codon
frequencies.

13.5.7.9 Partial least squares regression (PLS)
Welch et al. (2009) completed a systematic analy-
sis of gene design parameters in E. coli and iden-
tified codon usage within a gene as a critical
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determinant of protein expression levels. For two
different genes, they constructed a set of 40 genes,
each coding for the same amino acid sequence
but differing in their synonymous codon usage.
The difference in expression for these synonymous
sequences ranged from undetectable to 30% of cel-
lular protein. Using partial least squares regression
(PLS; Eriksson et al., 2004), the correlation of protein
production levels was tested against parameters
reported to affect expression. PLS does not provide
the optimal codon usage, rather it suggests which
codons should differ from their averages as well as
the direction. Only a subset of ten amino acids was
shown to have an impact on expression levels in
E. coli: Ala, Gly, Phe, Ser, Lys, Pro, Asp, Leu, Gln,
Thr (Welch et al., 2009). The codon frequencies that
are preferred and disfavoured coincide with the
isoacceptor tRNAs that are sensitive to starvation
of amino acid (Elf and Ehrenberg, 2005).

13.5.7.10 Synonymous codon usage bias
maximum-likelihood estimation (SCUMBLE)
The synonymous codon usage bias maximum-
likelihood estimation (SCUMBLE) algorithm is
based on an probabilistic model of codon usage for
a set of genes (Kloster and Tang, 2008) and is similar
to Bailly-Bechet et al. (2006). It was proposed to esti-
mate the degree of contribution by different sources
(‘trends’) and their effects on a gene (‘offsets’ or ‚i ).
Each gene is assigned a given number of offsets i(g)
that describe the extent to which a gene g is affected
by the estimated bias (‘trend’) number i . Each trend
can be described by a ‘preference function’ Ei (c),
which indicates how much trend i favours or dis-
favours codon c.

The dimensions that best explain the observed
codon usage of the gene set are determined by
maximum-likelihood estimation. Although similar
to principal component analysis, the authors sug-
gest their model can capture nonlinearities between
expression levels and codon usage, while use of
the maximum likelihood framework ensures good
statistical performance and reduces the risk of arte-
facts.

When translational selection was found to be the
major source of bias (as in S. cerevisiae), the first
offset (‚1) was highly correlated with gene expres-
sion. In contrast, in Helicobacter pylori, ‚3 was found

to be the highest correlating offset. A subsequent
study pointed out some weaknesses of SCUMBLE
but considered it complementary to rCAI or CAI
(Lee et al., 2010).

13.5.7.11 Stochastic evolutionary model of protein
production rate (SEMPPR)
The SEMPPR, a stochastic evolutionary model of
protein production rate, assumes that selection to
reduce the cost of nonsense errors drives the evolu-
tion of codon bias, which is counteracted by muta-
tion and drift (Gilchrist, 2007). The SEMPPR starts
by linking the coding sequence to its protein pro-
duction cost. This is then linked to fitness and a
population genetic model is used to compute the
probability of an allele being fixed. In a Bayesian
framework, the SEMPPR then generates a posterior
probability distribution for the protein production
rate of a given gene based on the codon sequence.

This can be conceptualized as a fitness landscape
built from protein production costs. The sequences
with the minimal and maximal protein production
costs are represented as the highest peak and lowest
point. The location of an observed sequence is a
consequence of selection, mutation, and drift. The
height of the peaks and valleys of the fitness land-
scape scale with the production rate of the gene.
Genes with low production rates will have a smaller
difference in the energetic usage between the high-
est peak and the lowest valley than will those with
high production rates. Inferences about production
rate are not only a function of the absolute differ-
ence between the observed and the minimum pro-
duction rate but also depend on where the observed
rate lies with respect to the entire set of possible
protein production costs. The results indicate pre-
dictions made using this method are as reliable as
index-based ones.

13.5.8 Measures for total codon usage in
genomes

At times it can be useful to compare the level of
codon bias at a genomic level. Some organisms
(e.g. yeast and E. coli) have a much higher level of
codon bias than other organisms (e.g. human and
D. melanogaster).
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13.5.8.1 Mean dissimilarity index (Dmean)
The intention of the mean dissimilarity index
(Dmean) is to quantify the level of diversity in syn-
onymous codon usage among all genes (or a subset
of genes) within a genome (Suzuki et al., 2009). The
synonymous codon usage of a coding sequence can
be represented by a vector of length 59 (excluding
stop codons and amino acids with only one codon)
with values wac defined as previously:

wac =
oac

max oac
, (13.56)

where oac is the number of occurrences of this codon
and max oac is the number of occurrences of the
most frequently used synonymous codon for this
amino acid, rendering the vector less dependent of
gene length, amino acid composition, and codon
degeneracy.

The distance between two genes is the Pearson
correlation distance (one minus Pearson’s prod-
uct moment correlation coefficient between relative
adaptiveness vectors w.) Dmean is the normalized
mean distance between all pairs of genes (Watve
and Gangal, 1996):

Dmean =
2

G(G − 1)

∑

i, j∈all pairs

{1 − cor(w(i), w( j))}

(13.57)
where G is the total number of genes.

13.6 Dependencies of measures

Indices of codon bias may target different aspects
of codon usage, but in general it is desirable that
an index is not influenced by properties other than
those intended to be measured. Therefore, it is
important to be aware of dependencies of underly-
ing properties. Sequence simulation is a useful tool
to investigate such dependencies of various indices.
To this end, we simulate the effects of nucleotide
composition, gene length, codon degeneracy, codon
usage discrepancy, and amino acid discrepancy on
the performance of various indices. Herein, we gen-
erally use the following approach, adapted for the
property we want to measure: (1) Draw the amino
acids from a distribution based on the codon fre-
quencies, or any other defined amino acid usage;
(2) draw the relative frequencies of synonymous
codons for that amino acid from the predefined

codon distribution; (3) simulate the start and stop
codons separately and concatenate them with the
rest of the sequence. We make the assumption that
there are no interactions among the codons and that
the probabilities of the codons are independent of
each other. The length of the sequences is fixed to
500 amino acids, unless length dependence is being
investigated.

13.6.1 Dependence on nucleotide
composition

The nucleotide composition is a result of muta-
tional biases that can cause dependencies for codon
bias indices. Often, the underlying nucleotide bias
is not the focus of the analysis, but rather the
codon usage bias given the background distribu-
tion of nucleotides. Dependence is not necessarily
a nuisance; for example, the Nc-plot (Wright, 1990)
a plot of Nc versus GC3, is used to investigate
codon usage patterns across genes. Nevertheless,
the dependence on the nucleotide frequencies is
unwanted for some indices.

To examine the effects of nucleotide composi-
tion, sequences are simulated using a gradient of
GC content and a fixed protein length (500 amino
acids). First, the individual nucleotide frequencies
are set such that the desired GC content is achieved,
and the frequency of A and T is equal, and the
frequency of G and C are equal. Assuming that
the codon frequency is the product of the three
nucleotide base frequencies, the codon distribution,
and thus the amino acid frequency distribution,
can be derived and are used to generate random
sequences. The value of the index is computed from
these sequences with each point on the plot repre-
senting the average of five such sequences.

Figure 13.1a summarizes the dependence of sev-
eral indices on GC content using a normalized
mean. The normalized mean is the mean minus
the total mean divided by the total sample stan-
dard deviation ((x − x̄)/sx). Several indices show
dependencies; for example, Nc shows the charac-
teristic parabola used for the Nc-plot, mentioned
previously. Also, Fop and CBI have dependencies,
some partly due to the GC profile of the defined
optimal codons. Of the indices considered, the CAI
is the least affected by the GC content. Figure 13.1b
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Figure 13.1 The dependence of indices on the GC content is shown for the indices CAI (circle), Fop (triangle), CBI (plus), and Nc (cross). (a) The
normalized mean values for each index, where the mean value of the index of the samples at X% GC are subtracted from the total mean divided by the
total sample standard deviation ((x − x̄ )/sx ). (b) The values for each index of the coefficient of variation (CV), which is the sample variance divided by the
sample mean (sx/x̄ ).
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Figure 13.2 Length-dependence of codon indices: (a) the normalized mean of the indices at increasing gene length (number of codons); (b) the
coefficient of variation. From the plots it can be seen that at short gene lengths the variance is higher and the estimates tend to deviate from the expected
value (based on random sequences).

shows for each index the values of the coefficient
of variation (CV), the sample variance divided by
the sample mean (sx/x̄). The coefficient of variation
(CV) provides a way to compare the variation, irre-
spective of the value of the mean. The variation is
not affected by GC content, albeit CBI has a much
larger variance than the other indices.

13.6.2 Dependence on gene length

To examine the dependency caused by differing
gene lengths we simulate sequences of different
lengths with a fixed codon distribution (using that
of E. coli). Figure 13.2 shows the dependence of

CAI, Fop, CBI, and Nc (a) and their variances (b)
on sequence length. Clearly the variation is higher
for shorter sequences. This undesirable behaviour
is due to stochastic sampling effects and many
authors advise against using sequences shorter that
100 amino acids.

13.6.3 Dependence on the degree of codon
degeneracy

The degree of degeneracy has been shown to
correlate with codon bias indices (Urrutia and
Hurst, 2001). Here we define ‘degree of degeneracy’
as the percentage of four- and six-fold degenerate
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Figure 13.3 The dependence of indices on the fraction of four- and six-fold degenerate codons: See Figure 13.1 caption for the definitions. (a) the
normalized means for the indices at increasing degrees of degeneracy; (b) the coefficient of variation for the indices in log space as they are comparatively
small.

amino acids of a sequence. In the simulations
(Figure 13.3a), it can be seen that CAI and Fop are
very dependent on the frequency of degenerate
codons, the reason being that these indices rely
on a reference set that may have a different set of
optimal codons. The indices that do not use a set
of preferred codons are less sensitive to this. The
behaviour of lower values of Nc at the extremes
is expected when the sequences consist of all or
none of these four- and six-fold degenerate codons.
The variance (Figure 13.3b) shows little change at
different degrees of codon degeneracy, although
the variance of the CBI is considerably higher than
the others.

13.6.4 Dependence on the skewness of
synonymous codon usage

Codon usage skewness is the non-uniformity of the
synonymous codons. This is due to the underlying
nucleotide distribution and is, in fact, very simi-
lar to codon usage bias. The reason why we make
this distinction is that sometimes it is desirable to
measure the codon bias ‘on top’ of the expected
codon frequencies. For example, some organisms
with extreme GC content have codon frequencies
that are very non-uniform and we would like to
detect the sequences that have higher degree of
codon bias. We define the maximum discrepancy
as to occurring when only one codon is used
and the minimum discrepancy as occurring when
all codons are used equally. That is, at discrep-

ancy 1, there is a complete uniform distribution of
synonymous codons, at 0.5 there is a decay from the
first codon of the amino acid to the last. At a dis-
crepancy close to zero, only one randomly selected
synonymous codon is used. The sequences are sim-
ulated by a discrepancy parameter d that reduces
the frequency of the ith synonymous codon by
di−1. For example, when d = 1

2 for a four-fold amino
acid, the codon frequencies will be proportional to{

1
2

0
, 1

2
1
, 1

2
2
, 1

2
3
}

, which results in
{ 8

15 , 4
15 , 2

15 , 1
15

}
after

normalization. Figure 13.4 shows the dependencies
of CAI, Fop, CBI, and Nc on codon discrepancy. In
terms of the normalized mean (Figure 13.4a) CBI
and Fop have values close to zero, while CAI shows
a slight bias. The number of effective codons Nc
measures from the deviation from uniform codon
bias (i.e. ranges from 20 to 61) and is obviously
dependent on the codon skewness, since this is the
underlying property that Nc aims to measure.

13.6.5 Dependence on amino acid
discrepancy

Amino acid composition and codon bias are often
correlated. Biophysical properties of the protein
(content of aromatic amino acids, hydrophobic-
ity, isoelectric point, etc.) can cause dependencies
for codon bias indices (Lobry and Gautier, 1994).
For example, the content of hydrophobic amino
acids in the membrane-bound regions of proteins
is high. Here, we look at how the skewness of
amino acid usage affects the codon bias indices.
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Figure 13.4 Dependence of indices on the codon skewness: (a) The normalized mean and (b) log(CV) are shown for CBI, Fop, CAI, and Nc.
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Figure 13.5 Dependence of the indices on the amino acid distribution: (a) the dependency of CAI, Fop, CBI, and Nc on the skew in the amino acid
distribution; (b) the coefficient of variation in log space.

Skewness ranges from equal amino acid usage to
the hypothetical case of a protein consisting of a
single amino acid. Figure 13.5a shows that estimates
of CAI, Fop, CBI, and Nc tend to converge towards
0 with increasing discrepancy, while the variance
of the estimates is generally low, although CBI has
a larger CV than the others.

Note that indices measuring amino acid usage
are commonly computed together with codon
indices. Two common indices of this type are: the
GRAVY and the AROMA. The grand averages of
hydropathy (GRAVY) score measures the hydro-
pathicity of a protein (Kyte and Doolittle, 1982) and
is the average hydropathy value Y of all the amino
acids:

GRAVY =
∑

a∈A

Fa Ya , (13.58)

where Fa is the relative frequency and Ya is the
hydropathy index of the amino acids.

The hydropathy values of the amino acids are:
A = 1.8, R = –4.5, N = –3.5, D = –3.5, C = 2.5, Q = –3.5,
E = –3.5, G = –0.4, H = –3.2, I = 4.5, L = 3.8, K = –3.9,
M = 1.9, F = 2.8, P = 1.6, S = –0.8, T = –0.7, W = –0.9,
Y = –1.3, V = 4.2. The rationale for the GRAVY index
is that the hydropathy of the encoded proteins is a
factor influencing the codon usage in some bacte-
ria (de Miranda et al., 2000). The aromaticity score
(AROMA) is the aromaticity of a protein, defined as
the frequency of aromatic amino acids in a protein
(Lobry and Gautier, 1994):

AROMA =
∑

a∈Aˆ

Fa , (13.59)
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Figure 13.6 Correlation among experimental data. The plots show the correlation between mRNA level, protein level, and rate of protein decay in the
yeast S. cerevisiae using a integrated dataset von der Haar, 2008. The diagonals show the histograms of the logs of the values of the measurements for
the whole genome.

where Aˆ is the subset of the amino acids that are
aromatic (i.e. Phe, Tyr, and Trp), and Fa is the rela-
tive frequency of that amino acid the protein.

13.7 Comparisons using biological data

A common usage of codon bias indices is to pre-
dict the level of protein abundance. For certain
organisms (e.g. S. cerevisiae and E. coli), there is a
clear correlation between protein abundance and
codon usage bias. Here we show correlations of
codon bias indices with experimental whole-
genome measurements of mRNA level, protein
abundance and the rate of protein turnover in yeast
(von der Haar, 2008) as summarized in Figure 13.6.
It is often assumed that the protein level should
be dependent on the mRNA level of a gene. How-
ever, only a part of the variance of protein levels
can be explained by mRNA levels (Spearman cor-
relation coefficient: 0.58). A likely reason for this
is that proteins decay at very different rates and

this decay influences the protein level. The average
rate of protein turnover rate in yeast is 2.2% per
hour, but some proteins have rates of almost 10%,
while others have rates close to zero (Pratt et al.,
2002). Protein decay has a weak inverse correla-
tion with protein and mRNA levels (Figure 13.6),
which suggests that abundant proteins tend to have
slower decay.

The processes of transcription, translation, and
post-translation (e.g. turnover rate and modifica-
tions) imposes limits on what it is possible to
measure with codon bias indices. For example,
fast-growing proteins that are only expressed at a
certain time point of development may have values
that indicate high abundance, but the overall pro-
tein concentration is low. Furthermore, the experi-
mental data that we use for validation have errors.
For one thing, there are often systematic biases in
expression data originating from the detection limit
of the method. For example, smaller proteins are
less likely to be detected correctly, since shorter
peptides diffuse more readily on 2D gels, which
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Figure 13.7 Correlation with experimental data. The correlations of CAI, tAI, Fop, CBI, Nc, and ER with the logs of mRNA concentration, protein
concentration, and the the rate of protein synthesis ks in S. cerevisiae are shown.

decrease the intensity of the spots. The correlations
between these data measurements and the codon
bias indices are discussed in the following sections.

13.7.1 Correlation with transcript and protein
levels

Codon usage correlates with the mRNA transcript
levels and protein abundance in yeast because of
selection for optimal elongation. If elongation is
inefficient, larger quantities of ribosomes are occu-
pied on the mRNA and are not available to engage
in initiation of translation. Therefore, codon pat-
terns that promote efficient translation are pre-
ferred. For example, ribosomal proteins are among
the most abundant proteins and typically have a
high codon bias.

Indices that have a high correlation with expres-
sion levels are desirable for the prediction of expres-
sion. The top row of Figure 13.7 shows the correla-
tion between various indices and the logarithm of
the mRNA levels for S. cerevisiae. The highest cor-
relation coefficients are found for the four indices
based on distance to the optimal codon usage, CBI
and Fop with CAI and tAI close behind. The corre-
lation of the protein level with the indices is similar

to that of mRNA levels, although CAI and tAI show
a slightly higher correlation than CBI and Fop (mid-
dle row in Figure 13.7).

13.7.2 Correlation with rate of protein
synthesis

It appears that the rate of protein turnover (e.g.
protein degradation) is not the same for all proteins
and that normalizing mRNA concentration without
accounting for protein degradation may be an
oversimplification. Here we look at the correlation
of codon bias indices with the rate of protein
synthesis ks .

Figure 13.8 shows a simplified scheme of pro-
tein synthesis, in which the concentration of protein

[mRNA] [Protein]

Transcription

mRNA decay

Protein 
turnoverTranslation

ks kd

Figure 13.8 Model of protein synthesis. The protein concentration
depends on the concentration of mRNA, the rate of synthesis ks , and the
rate of protein degradation kd .
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depends on the mRNA level and protein decay.
The concentration of mRNA depends on the rate
of transcription and mRNA decay. We will not pay
particular interest to the dynamics of mRNA and
use the mRNA concentrations directly. We assume
that the speed of translation can be inferred from
the rate of translation, which can be inferred if the
concentrations of mRNA and protein are known,
along with the protein degradation rate. The rate
of synthesis ks can be defined as the following.
Assume that the change in the concentration of a
particular protein is:

d[Protein]
dt

= ks[mRNA] − kd [Protein]. (13.60)

Assuming steady-state for protein and mRNA con-
centrations, we can find an approximation of the
rate of protein synthesis from the ratio of the con-
centrations of protein and mRNA, and the rate of
protein decay:

ks = kd
[Protein]
[mRNA]

. (13.61)

The protein decay rate can be determined from
the protein half-life time kd = ln 2/t1

2
. Although the

whole-genome measurements of protein degrada-
tion is much less studied than protein and mRNA
abundances, the half-lives of proteins have been
determined for yeast (Belle et al., 2006). The corre-
lation between the indices and the synthesis rate is
shown in the bottom row of Figure 13.7. The indices
show less correlation with the protein synthesis rate
than with the protein and mRNA abundance. One
potential reason for this is that the experimental
data is often associated with large errors and in
our model for the protein synthesis rate ks , the
errors from three different separate experiments are
cumulated. Also, kd can have big error since the
whole genome measures are performed under dif-
ferent conditions.

13.8 Limitations of codon usage indices

All codon indices map some aspect of codon usage
to one single number. The loss of information by
this reduction in dimensionality means that indices
cannot capture the entire extent of the underly-
ing biological phenomena. Limitations and short-
comings of all codon bias indices are also present.

A common theme is that indices fail to exclude
the confounding effects of other biases. As men-
tioned in the introduction, there are several such
effects. The amino acid composition of a protein can
strongly influence the codon usage, as well as the
nucleotide distribution. The length of a gene can be
a strong feature for determining the codon bias, in
particular for very short sequences, where all amino
acids and codons may not be present. A poten-
tial remedy for missing or rare codons or amino
acids is to use pseudo-counts for the codon dis-
tribution. An intra-genic variation of codon usage
also exists, in which the amount and direction of
codon bias can vary along the gene (Qin et al., 2004).
For example, slow codons at the start of the coding
regions serve to slowly load ribosomes onto the
mRNA to avoid congestion (Tuller et al., 2010). Such
position-specific codon biases further complicate
the estimates and care must be taken to account for
variable codon usage along the gene. Although not
discussed in this chapter, significant dicodon-biases
exist: for example, two consecutive rare codons are
generally avoided, since this increases the probabil-
ity of ribosome drop-off (Cruz-Vera et al., 2004).

Sometimes overlooked is the fact that some
organisms use alternative genetic codes. The rea-
son for this is that the two most common genetic
codes, the standard (1) and the bacterial (11) are
identical apart from that the bacterial has several
different start codons. Several indices ignore the
start codon, since it is being read by a designated
tRNA that is not part of the elongation. Neverthe-
less there are many organisms that use other alter-
native genetic codes and most indices have to be
adopted to account for this.

13.9 Conclusions

This chapter summarizes many codon bias indices
and unifies their notation to facilitate visualization
of their similarities. We have classified the indices
into categories based on historical and method-
ological similarities. In addition to reviewing the
indices, we have outlined methodologies to evalu-
ate them, evaluated a few indices to illustrate their
behaviour, and suggested methodologies for fur-
ther studies. To evaluate all indices is beyond the
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scope of this review, since for many indices no
implementation is available.

We have investigated the dependence of the
indices on properties of the sequences using
simulations. We have also estimated the extent
to which the indices capture different aspects of
expression-based experimental data. To this end,
we measured the correlation of the indices with
mRNA and protein abundance data, as well as an
estimated rate of synthesis. A statistical framework
in which all methodologies could be evaluated in
a systematic manner would be desirable to answer
questions of performance.

The choice of index depends on the task, as dif-
ferent indices measure different aspects of codon
usage. To predict protein yield for over-expression
of heterologous proteins, the PLS measure performs
well when the goal is to optimize yield in pro-
tein production (Welch et al., 2009). In such cases,
tRNA depletion becomes a limiting factor and thus
codons less sensitive to starvation become prefer-
able. The codon adaptation index (CAI) is a long
used method for measuring codon usage bias and
has the advantage of being widely known and
understood. In particular, the version by Carbone
et al. (2003) is convenient and remains a good choice
for measuring codon usage bias (Friberg et al., 2004),
as it does not require external knowledge, such
as optimal codons or anticodon–codon mapping.
Other studies have also provided recommendations
for which indices to use (Supek and Vlahovicek,
2005).

Several different complementary indices can be
used to understand the diversity of codon usage
among genes and organisms as they sometimes
capture different aspects of evolution. It may be
that an amalgam of indices may provide improved
performance. For example, a combination of indices
that capture different aspects of translation can be
used as a better classifier for predicting translation
efficiency (Tuller et al., 2004).

In our opinion there is room for improvement,
in particular, for predictions towards functionality,
regulation, and lowly expressed genes. In addition
to the obvious requirements of being theoretically
sound and adequately described, a few points
should be observed when devising a new index
of codon usage. Any new index should have an

accessible implementation. If possible, the source
code of the implementation should be accessible
in order to facilitate verification and understand-
ing. A web-interface (preferably including a web
API) and downloadable binaries are essential. If
the index is to reach the intended audience, the
importance of a proper implementation can not be
underestimated.
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